# ANALISIS PENENTUAN WAKTU DAN BIAYA MENGGUNAKAN METODE *TIMECOST TRADE OFF* (TCTO) DI PT. ABC

# Nailul Izzah<sup>1)</sup>, Mohammad Riyon Hidayat<sup>2)</sup>

<sup>1,2)</sup> Program Studi Teknik Industri, Universitas Qomaruddin E-mail<sup>1,2)</sup>: nailul322@gmail.com , Ryonhidayat5@gmail.com

# Agustin Sukarsono<sup>3)</sup>

<sup>3)</sup> Program studi Teknik Industri, STT POMOSDA Nganjuk E-mail<sup>3)</sup>: agustystt@gmail.com

#### **ABSTRAK**

Proyek merupakan kegiatan sementara yang dibatasi oleh waktu dan biaya. Merencanakan suatu proyek sangatlah penting karena dapat menetukan tingkat keberhasilan atau kegagalan yang akan dialami dalam pelaksanaannya, sebab keterlambatan sangat tidak dikehendaki. Tujuan dari penelitian ini adalah untuk mengetahui lintasan kritis serta menentukan waktu kerja dan perencanaan biaya optimal pada proyek penggantian cleading dan ram area crusher pp. Dari hasil penelitian dapat diketahui kegiatan yang melewati lintasan kritis menggunakan metode CPM yaitu persiapan, fabrikasi gordeng, painting gordeng, bongkar gordeng dan dinding cleading rusak, install gordeng, install dinding cleading, bongkar scaffolding dan cleaning area. Setelah itu dilakukan perhitungan metode PERT yang menghasilkan waktu selesai dalam 25 hari dengan keyakinan 98,5%. Dengan metode TCTO terjadi percepatan waktu yang semula 28 hari menjadi 25 hari menggunakan penambahan jam kerja (lembur) sebesar Rp. 45.665.400 dengan presentasi keuntungan proyek 23,89% merupakan percepatan terbaik.

# Kata kunci: CPM, PERT, dan TCTO

# **PENDAHULUAN**

Dalam perkembangan zaman saat ini, persaingan suatu perusahaan semakin meningkat. Baik dalam bidang produksi maupun dalam bidang jasa, mereka bersaing untuk menjadi yang terbaik di mata konsumen. Banyak permintaan produk yang bervariasi sehingga setiap perusahaan harus mampu menciptakan suatu produk, baik secara teknis dan teknologi untuk memenuhi produk terbaik yang memuaskan pihak konsumen. Di bidang jasa misalnya terdapat suatu perusahaan yang bergerak dibidang kontruksi, mereka yang sesama dibidang kontruksi saling bersaing untuk mengerjakan suatu proyek dengan mempertimbangkan kualitas, waktu dan biaya. Dengan kualitas yang baik, waktu tercepat dan biaya yang minim menjadikan kekuatan bagi perusahaan agar mampu bersaing dengan perusahaan yang lain.

Proyek merupakan usaha yang bersifat sementara untuk menghasilkan produk atau layanan yang unik Dalam mengerjakan suatu proyek dibutuhkan sebuah manajemen proyek yang akan merencanakan, mengorganisasikan, memimpin, dan mengendalikan kegiatan anggota serta sumber daya yang lain untuk mencapai sasaran organisasi (perusahaan) yang telah ditentukan. Merencanakan suatu proyek sangatlah penting karena dapat menetukan tingkat keberhasilan atau kegagalan yang akan dialami dalam proses pelaksanaannya. Dalam perencanaannya akan mempengaruhi waktu penyelesaian proyek dan besar biaya dalam menjalankan proyek, sehingga untuk menetukannya diperlukan perencanaan yang sesuai dalam waktu dan biaya agar meminimalkan resiko yang dapat terjadi.

Pada pelaksanaan proyek bisa dilakukan percepatan sehingga waktu penyelesaian lebih cepa takan tetapi ada beberapa kendala *eksternal* yang bisa terjadi pada saat proyek berlangsung seperti factor cuaca dan penerapan yang tidak sesuai dengan perencanaan.

Perencanaan manajemen proyek dilakukan untuk mengatasi kendala-kendala yang mungkin terjadi padasaat proses pelaksanaan berlangsung agar tidak menghambat proses pengerjaan yang dapat memperbesar anggaran biaya. Karena bila tejadi sebuah keterlambatan dapat merugikan kedua belah pihak yaitu pemberi kerja (owner) dan dari penerima kerja yaitu kontraktor.

Untuk menentukan waktu kerja dan besar biaya yaitu dengan menggunakan metode Time Cost Trade Off (TCTO). Yang mana dalam metode tersebut dapat merubah pertukaran biaya dan waktu pada suatu proyek yaitu dengan menambah besar anggaran biaya dan mempercepat waktu (durasi) proyek dari waktu normal.

## **TINJAUAN PUSTAKA**

# Critical Path Mehod (CPM)

Critical Path Mehod (CPM) adalah Jaringan yang menggunakan keseimbangan waktu dan biaya. Aktivitas yang dapat terselesaikan lebih cepat dari waktu normal dengan biaya tertentu. Critical Path Mehod (CPM) merupakan dasar dari sistem perencanaan dan pengendalian kemajuan pekerjaan yang didasarkan pada network atau jaringan kerja (Ezekiel, 2016). Salah satu metode network planning yang berorientasi pada waktu yang mengarah pada penentuan penjadwalan proyek dan estimasi waktunya bersifat diterministik/pasti (Sugiyarto dkk, 2013)

# Program Evaluation and Review Technique (PERT)

Program Evaluation and Review Technique (PERT) adalah metode penjadwalan proyek yang memerlukan tiga waktu untuk setiap kegiatan yaitu optimis, realistis, dan pesimis untuk merangkai jaringan kerja. Dengan menggunakan tiga dugaan waktu ini, peluang penyelesaian proyek pada tanggal yang ditetapkan dapat dihitung, bersama dengan waktu mulai dan akhir standart untuk flap kegiatan atau kejadian. Dalam melakukan perkiraan waktu proyek cukup menggunakan tiga waktu yang dirincikan yaitu Prakiraan waktu paling optimis, Waktu Realistis dan Waktu Pesimis. Dengan rumus perhitungan sebagai berikut:

$$te = \frac{a + 4m + b}{6}$$

Keterangan:

te = expeted duration

a = Prakiraan waktu paling optimis

m = Waktu Realistis

b = Waktu Pesimis

Setelah perhitungan durasi optimal dilakukan, selanjutnya adalah menghitung deviasi standart kegiatan yang mana besarnya kegiatan tergantung besarnya a dan b, formulasi sebagai berikut:

$$S = (\frac{b-a}{6})$$

 $S = (\frac{b-a}{6})$  Menghitung varian kegiatan yang dirincikan sebagai berikut :

$$V(Te) = s^2 = \sigma^2 = (\frac{b-a}{6})^2$$

Setelah menghitung varian pada sebuah waktu kegiatan proyek, langkah selanjutnya adalah menghitung probabilitas proyek. Serta menganalisa kedalam distribusi normal yang mana menurut Suwoto (2013) dalam jurnalnya menyebutkan bahwa nilai dari z dalam tabel distribusi normal akan menunjukan seberapa besar suatu proyek akan terselesaikan.

$$z = \frac{Td - Te}{V(\sigma^2)}$$

## Time Cost Trade Off (TCTO)

Time cost trade off adalah proses dilakukannya pertukaran waktu dan biaya untuk mempercepat waktu penyelesaian suatu aktivitas.

## Percepatan Waktu

Dalam melakukan percepatan penyelesaian suatu proyek terdapat beberapa cara untuk mengatasinya yaitu sebagai berikut:

# a. Pelaksanaan Penambahan Jam Kerja (Lembur)

Salah satu strategi untuk mempercepat waktu penyelesaian proyek adalah dengan menambah jam kerja (lembur) para pekerja maupun alat berat. Semakin besar penambahan jam kerja (lembur) dapat menimbulkan penurunan produktivitas. Semisal penambahan 1 jam, 2 jam, 3 jam, dan 4 jam sesuai dengan yang diinginan. Semakin besar penambahan jam lembur dapat menimbulkan penurunan produktivitas, indikasi dari penurunan produktivitas pekerja terhadap penambahan jam kerja (lembur). Dalam penambah untuk upah yang diberikan bervariasi. Pada satu jam pertama, pekerja mendapatkan tambahan upah sebesar 1,5 kali upah perjam waktu normal dan pada penambahan jam kerja berikutnya maka pekerja akan mendapatkan sebesar 2 kali upah perjam waktu normal. Tetapi terdapat perusahaan yang menerapkan 2 kali gaji setelah jam normal 8 jam. Dari uraian di atas dapat ditulis sebagai berikut ini:

- 1. Durasi normal (Jam) = Durasi (Hari) x 8
- 2. Produktivitas tiap jam  $=\frac{\text{Volume}}{\text{Durasi normal}}$
- 3. Produktivitas harian setelah crash = (Jam kerja perhari  $\times$  Produktivitas tiap jam) + (a  $\times$  b  $\times$  Produktivitas tiap jam)dimana:
  - a = lama penambahan jam kerja (lembur),
  - b = akibat penambahan jam kerja koefisien produktivitas menurun
- 4. Maximal Crasing = Durasi Normal Crashing
- 5. Durasi percepatan (Hari) = Durasi Normal Crashing
- 6. Durasi percepatan (Jam) = Percepatan (Hari) x 8
- 7. Produktivitas jam dipercepat  $=\frac{\text{Volume}}{\text{Durasi Dipercepat}}$
- 8. Waktu lembur perhari =

Produktivitas jam dipercepat-Produktivitas jam normal x Jam normal x b

- 9. Biaya Percepatan = Biaya Normal Setelah crashing + Biaya Lembur
- 10. Slope Biaya Perhari=  $\frac{Biaya\ percepatan Biaya\ normal}{Durasi\ normal Durasi\ percepatan}$
- 11. Slope biaya setelah *crashing*= Slope Biaya Perhari x Produktivitas jam dipercepat

### 1. Pelaksanaan Penambahan Tenaga Kerja

Ruang kerja yang tersedia perlu diperhatiakan apabila akan dilakukan penambahan jumlah tenaga kerja, karena penambahan tenaga kerja pada suatu aktivitas tidak boleh mengganggu pemakaian tenaga kerja untuk aktivitasyang lain yang sedang berjalan pada saat yang sama. Pengawasan yang kurang juga dapat menurunkan produktivita karena tidak mengetahui ruang lingkup pekerjaan. Jumlah dan biaya tambahan pekerja dapat dihitung dengan rumus sebagai berikut:

- 1. Penentuan kapasitas pekerja per hari
- 2. Kapasitas tenaga kerja = T Kapasitas pekerja
- 3. Jumlah tenaga kerja=  $\frac{\text{Volume}}{\text{Kapasitas tenaga kerja x Durasi (Hari)}}$
- 4. Upah = Jumlah pekerja x Upah per orang
- 5. Total upah tenaga kerj = Jumlah seluruh upah pekerja x Durasi

- 6. slope Biaya =  $\frac{Biaya \text{ percepatan-Biaya normal}}{Durasi \text{ normal-Durasi percepatan}}$
- 7. Slope biaya untuk percepatan = Slope biaya akibat percepatan x Durasi percepatan

#### **METODE PENELITIAN**

# Jenis penelitian

Jenis penelitian yang dilakukan yaitu menggunakan penelitian kuantitatif yang mana dapat diartikan sebagai metode penelitian yang berlandaskan pada filsafat positivism, digunakan untuk meneliti pada populasi atau sampel tertentu, teknik pengambilan sampel pada umumnya dilakukan secara *random*, pengumpulan data menggunakan *instrument* penelitian, analisis data bersifat kuantitatif/statistic dengan tujuan untuk menguji hipotesis yang telah ditetapkan (Sugiyono, 2017). Pada penelitian ini menggunakan data berupa angka mengenai waktu dan biaya pada proyek yang sedang dikerjakan.

#### **Sumber Data Penelitian**

Sumber data pada penelitian ini yitu menggunakan sumber data primer dan data skunder.

a. Data Primer

Data primer merupakan data yang diperoleh secara langsung dari tempat penelitian yang diambil dengan cara wawancara, mencatat langsung dari objek yang diamati atau dengan cara lainnya, data yang diperoleh yaitu data aktivitas kegiatan, jadwal dan waktu (*durasi*), hubungan ketergantungant tiap kegiatan, besar rencana anggaran biaya, dan banyaknya tenaga kerja yang dibutuhkan pada proses penggerjaan proyek penggantian cleading dan ram area crusher pp.

b. Data Skunder

Data skunder merupakan data yang sudah ada dalam perusahaan, biasanya berupa dokumen-dokumen, pada penelitian ini data yang dieroleh dari PT. ABC yaitu profil perusahaan PT. ABC.

#### **Teknik Pengumpulan Data Penelitian**

Dalam mendapatkan data penelitian, ada beberapa teknik yng dilakukan yaitu sebagai berikut:

a. Observasi

Pengumpulan data yang dilakukan langsung pada objek yang diteliti, pada penelitian ini objek yang diteliti pada proses pengerjaan proyek penggantian cleading dan ram area crusher pp.

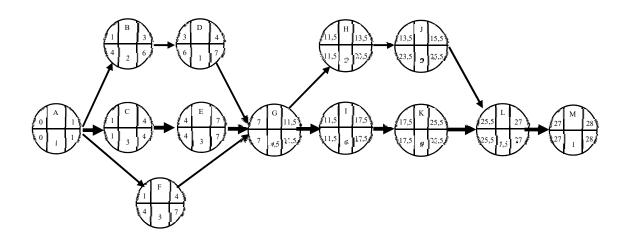
b. Wawancara

Teknik pengumpulan data yang dilakukan dengan cara mendatangi karyawan PT. ABC secara langsung dengan memberikan pertanyaan yang sudah disusun sesuai dengan data yang dibutuhkan dalam penelitian ini.

c. Studi Dokumentasi

Pengumpulan data yang dilakukan dengan cara mempelajari dan mengamati dokumen-dokumen yang dimiliki PT. ABC.

#### **Teknik Analisis Data**


Penelitian ini menggunakan tiga metode, adapun langkah-langkah tiap metode sebagai berikut:

- a. Metode Critical Path Mehod (CPM)
  - 1. Menghitung Forward Pass, Backward Pass dan Total Float
  - 2. Setelah itu dilakukan perhitungan lintasan krisis untuk mempercepat waktu kerja
- b. Metode Program Evaluation and Review Technique (PERT)
  - 1. Menghitung *expeted duration* dengan menggunakan tiga waktu yaitu waktu optimis, realistis dan pesimis
  - 2. Menghitung deviasi standart dan varian kegiatan
  - 3. Menghitung angka kemungkinan mencapai target
- c. Metode *Time Cost Trade Off* (TCTO)
  - 1. Percepatan waktu dengan penambahan jam kerja
  - 2. Percepatan waktu dengan penambahan tenaga kerja

# **PEMBAHASAN**

# Jaringan Kerja

Berikut ini merupakan jaringan kerja pada proyek penggantian cleading dan ram area crusher pp.



Gambar 1. Jaringan Kerja Pada ProyekPenggantian Cleading Dan Ram Area Crusher PP

Tabel 1. Simbol Dan Aktivitas Pengerjaan Proyek

| Simbol Kegiatan | Nama Kegiatan                              |  |  |
|-----------------|--------------------------------------------|--|--|
| Α               | Persiapan                                  |  |  |
| В               | Fabrikasi <i>Frame</i>                     |  |  |
| С               | Fabrikasi Gordeng                          |  |  |
| D               | Painting Frame                             |  |  |
| E               | Painting Gordeng                           |  |  |
| F               | Install Scaffolding                        |  |  |
| G               | Bongkar Gordeng Dan Dinding Cleading Rusak |  |  |
| Н               | Instal Frame Chiken Mesh                   |  |  |
| ı               | Install Gordeng                            |  |  |
| J               | Install Chiken Mesh                        |  |  |
| K               | Install Dinding Cleading                   |  |  |
| L               | Bongkar Scaffolding                        |  |  |
| M               | Cleaning Area                              |  |  |
|                 |                                            |  |  |

Sumber:PT. ABC

# Critical Path Method(CPM)

Dari data yang sudah diperoleh yaitu durasi kegiatan dan hubungan antar aktivitas maka bisa dilaukan perhitungan dengan menggunakan metode CPM untuk mengetahui jaringan kerja yang pada akhirnya dapat mengetahui jalur kritis.

Tabel 2. Hasil Perhitungan Maju, Mundur dan Float Total

| Simbol<br>Kegiatan | Activit<br>y Time | Early<br>Start(ES) | Early Finish<br>(EF) | Late<br>Start<br>(LS) | Late<br>Finish<br>(LF) | Slack | Kritis |
|--------------------|-------------------|--------------------|----------------------|-----------------------|------------------------|-------|--------|
| Α                  | 1                 | 0                  | 1                    | 0                     | 1                      | 0     | Ya     |
| В                  | 2                 | 1                  | 3                    | 4                     | 6                      | 3     | Tidak  |
| С                  | 3                 | 1                  | 4                    | 1                     | 4                      | 0     | Ya     |
| D                  | 1                 | 3                  | 4                    | 6                     | 7                      | 3     | Tidak  |
| E                  | 3                 | 4                  | 7                    | 4                     | 7                      | 0     | Ya     |
| F                  | 3                 | 1                  | 4                    | 4                     | 7                      | 3     | Tidak  |
| G                  | 4,5               | 7                  | 11,5                 | 7                     | 11,5                   | 0     | Ya     |
| Н                  | 2                 | 11,5               | 13,5                 | 21,5                  | 23,5                   | 10    | Tidak  |
| I                  | 6                 | 11,5               | 17,5                 | 11,5                  | 17,5                   | 0     | Ya     |
| J                  | 2                 | 13,5               | 15,5                 | 23,5                  | 25,5                   | 10    | Tidak  |
| К                  | 8                 | 17,5               | 25,5                 | 17,5                  | 25,5                   | 0     | Ya     |
| L                  | 1,5               | 25,5               | 27                   | 25,5                  | 27                     | 0     | Ya     |
| M                  | 1                 | 27                 | 28                   | 27                    | 28                     | 0     | Ya     |

Sumber:Pengolahan Data

Tabel 2 merupakan hasil dari perhitungan maju, perhitungan mundur dan perhitungan float total. Kegiatan A dengan durasi waktu kegiatan 1 hari memiliki ES = 0, EF = 1, LS = 0, LF = 1 slack = 0 dan berada pada jalur kritis. Kegiatan B dengan durasi waktu kegiatan 2 hari memiliki ES = 1,

EF = 3, LS = 4, LF = 6 slack = 3 dan tidak berada pada jalur kritis, dan seterusnya sampai kegiatan M.

#### **Identifikasi Jalur Kritis**

Jalur ktisis dapat diidentifikasi dengan nilai *float* total sama dengan 0. Dari hasil perhitungan pada proyek penggantian *cleading* dan ram area crusher pp yang berada di jalur kritis yaitu A, C, E, G, I, K, L, M dengan waktu penyelesaian 28 hari.

# Program Evaluation and Review Technique (PERT)

Metode PERT hampir sama dengan metode CPM, hanya saja metode PERT menggunakan tiga satuan waktu. Pada metode PERT nantinya akan mengetahui waktu kemungkinan penyelesaian proyek.

Berikut ini merupakan tabel yang menyajikan 3 waktu yaitu waktu optimis (a), waktu Realistis (m), dan waktu pesimis (b), Yang mana angka optimis dan pesimis diambil dari perkiraan keadaan dilapangan.

Tabel 3. Waktu Optimis, Waktu Realistis dan Waktu Pesimis

| A         Persiapan         (a)         (m)         (b)           B         Fabrikasi Frame         0,125         1         1,12           B         Fabrikasi Frame         0,5         2         2,5           C         Fabrikasi Gordeng         1         3         3,12           D         Painting Frame         0,5         1         1,5           E         Painting Gordeng         1         3         3,12           F         Install Scaffolding         1,5         3         4           G         Bongkar Gordeng Dan Dinding Cleading Rusak         1         4,5         4,62           H         Instal Frame Chiken Mesh         1,5         2         2,5           I         Install Gordeng         2         6         6,12           J         Install Chiken Mesh         0,5         2         2,5           K         Install Dinding Cleading         3         8         8,12           L         Bongkar Scaffolding         0,5         1,5         1,62 | Simbol   | Nama Kegiatan                              | V     | Vaktu (Hari | )              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------|-------|-------------|----------------|
| A       Persiapan       0,125       1       1,12         B       Fabrikasi Frame       0,5       2       2,5         C       Fabrikasi Gordeng       1       3       3,12         D       Painting Frame       0,5       1       1,5         E       Painting Gordeng       1       3       3,12         F       Install Scaffolding       1,5       3       4         G       Bongkar Gordeng Dan Dinding Cleading Rusak       1       4,5       4,62         H       Instal Frame Chiken Mesh       1,5       2       2,5         I       Install Gordeng       2       6       6,12         J       Install Chiken Mesh       0,5       2       2,5         K       Install Dinding Cleading       3       8       8,12         L       Bongkar Scaffolding       0,5       1,5       1,62                                                                                                                                                                                               | Kegiatan |                                            | •     |             | Pesimis<br>(b) |
| C         Fabrikasi Gordeng         1         3         3,12           D         Painting Frame         0,5         1         1,5           E         Painting Gordeng         1         3         3,12           F         Install Scaffolding         1,5         3         4           G         Bongkar Gordeng Dan Dinding Cleading Rusak         1         4,5         4,62           H         Instal Frame Chiken Mesh         1,5         2         2,5           I         Install Gordeng         2         6         6,12           J         Install Chiken Mesh         0,5         2         2,5           K         Install Dinding Cleading         3         8         8,12           L         Bongkar Scaffolding         0,5         1,5         1,62                                                                                                                                                                                                                  | Α        | Persiapan                                  |       |             | 1,125          |
| D         Painting Frame         0,5         1         1,5           E         Painting Gordeng         1         3         3,12           F         Install Scaffolding         1,5         3         4           G         Bongkar Gordeng Dan Dinding Cleading Rusak         1         4,5         4,62           H         Install Frame Chiken Mesh         1,5         2         2,5           I         Install Gordeng         2         6         6,12           J         Install Chiken Mesh         0,5         2         2,5           K         Install Dinding Cleading         3         8         8,12           L         Bongkar Scaffolding         0,5         1,5         1,62                                                                                                                                                                                                                                                                                        | В        | Fabrikasi <i>Frame</i>                     | 0,5   | 2           | 2,5            |
| E         Painting Gordeng         1         3         3,12           F         Install Scaffolding         1,5         3         4           G         Bongkar Gordeng Dan Dinding Cleading Rusak         1         4,5         4,62           H         Instal Frame Chiken Mesh         1,5         2         2,5           I         Install Gordeng         2         6         6,12           J         Install Chiken Mesh         0,5         2         2,5           K         Install Dinding Cleading         3         8         8,12           L         Bongkar Scaffolding         0,5         1,5         1,62                                                                                                                                                                                                                                                                                                                                                              | С        | Fabrikasi Gordeng                          | 1     | 3           | 3,125          |
| F         Install Scaffolding         1,5         3         4           G         Bongkar Gordeng Dan Dinding Cleading Rusak         1         4,5         4,62           H         Instal Frame Chiken Mesh         1,5         2         2,5           I         Install Gordeng         2         6         6,12           J         Install Chiken Mesh         0,5         2         2,5           K         Install Dinding Cleading         3         8         8,12           L         Bongkar Scaffolding         0,5         1,5         1,62                                                                                                                                                                                                                                                                                                                                                                                                                                    | D        | Painting Frame                             | 0,5   | 1           | 1,5            |
| G         Bongkar Gordeng Dan Dinding Cleading Rusak         1         4,5         4,62           H         Instal Frame Chiken Mesh         1,5         2         2,5           I         Install Gordeng         2         6         6,12           J         Install Chiken Mesh         0,5         2         2,5           K         Install Dinding Cleading         3         8         8,12           L         Bongkar Scaffolding         0,5         1,5         1,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E        | Painting Gordeng                           | 1     | 3           | 3,125          |
| H         Instal Frame Chiken Mesh         1,5         2         2,5           I         Install Gordeng         2         6         6,12           J         Install Chiken Mesh         0,5         2         2,5           K         Install Dinding Cleading         3         8         8,12           L         Bongkar Scaffolding         0,5         1,5         1,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F        | Install Scaffolding                        | 1,5   | 3           | 4              |
| I       Install Gordeng       2       6       6,12         J       Install Chiken Mesh       0,5       2       2,5         K       Install Dinding Cleading       3       8       8,12         L       Bongkar Scaffolding       0,5       1,5       1,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G        | Bongkar Gordeng Dan Dinding Cleading Rusak | 1     | 4,5         | 4,625          |
| J         Install Chiken Mesh         0,5         2         2,5           K         Install Dinding Cleading         3         8         8,12           L         Bongkar Scaffolding         0,5         1,5         1,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н        | Instal Frame Chiken Mesh                   | 1,5   | 2           | 2,5            |
| K         Install Dinding Cleading         3         8         8,12           L         Bongkar Scaffolding         0,5         1,5         1,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | Install Gordeng                            | 2     | 6           | 6,125          |
| L Bongkar <i>Scaffolding</i> 0,5 1,5 1,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J        | Install Chiken Mesh                        | 0,5   | 2           | 2,5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K        | Install Dinding Cleading                   | 3     | 8           | 8,125          |
| <b>M</b> Cleaning Area 0,125 1 1,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L        | Bongkar Scaffolding                        | 0,5   | 1,5         | 1,625          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M        | Cleaning Area                              | 0,125 | 1           | 1,125          |

Sumber:PT. ABC

Tabel 3 menjelaskan mengenai waktu kegiatan yang mempunyai tiga waktu, kegiatan A waktu optmis (a) = 0.125 waktu Realistis (m) = 1 dan waktu pesimis (b) = 1.125, kegiatan B waktu optmis (a) = 0.5 waktu Realistis (m) = 2 dan waktu pesimis (b) = 2.5, kegiatan C waktu optmis (a) = 1 waktu Realistis (m) = 3 dan waktu pesimis (b) = 3.125 dan seterusnya sampai dengan kegiatan M.

| Simbol<br>Kegiatan | Optimis<br>(a) | Realistis<br>(m) | Pesimis<br>(b) | Kritis | Expected<br>Duration<br>(Te) | Standart<br>Deviasi<br>(S) | Varians $(S^2)$ |
|--------------------|----------------|------------------|----------------|--------|------------------------------|----------------------------|-----------------|
| Α                  | 0,125          | 1                | 1,125          | Ya     | 0,88                         | 0,17                       | 0,03            |
| В                  | 0,5            | 2                | 2,5            | Tidak  | 1,83                         | 0,33                       | 0,11            |
| С                  | 1              | 3                | 3,125          | Ya     | 2,69                         | 0,35                       | 0,13            |
| D                  | 0,5            | 1                | 1,5            | Tidak  | 1,00                         | 0,17                       | 0,03            |
| E                  | 1              | 3                | 3,125          | Ya     | 2,69                         | 0,35                       | 0,13            |
| F                  | 1,5            | 3                | 4              | Tidak  | 2,92                         | 0,42                       | 0,17            |
| G                  | 1              | 4,5              | 4,625          | Ya     | 3,94                         | 0,60                       | 0,37            |
| н                  | 1,5            | 2                | 2,5            | Tidak  | 2,00                         | 0,17                       | 0,03            |
| ı                  | 2              | 6                | 6,125          | Ya     | 5,35                         | 0,69                       | 0,47            |
| J                  | 0,5            | 2                | 2,5            | Tidak  | 1,83                         | 0,33                       | 0,11            |
| K                  | 3              | 8                | 8,125          | Ya     | 7,19                         | 0,85                       | 0,73            |
| L                  | 0,5            | 1,5              | 1,625          | Ya     | 1,35                         | 0,19                       | 0,04            |
| M                  | 0,125          | 1                | 1,125          | Ya     | 0,88                         | 0,17                       | 0,03            |

Tabel 4. Hasil Perhitungan Expected Duration, Standart Deviasi Dan Varians

Sumber:Pengolahan Data

Tabel 4 menjelaskan mengenai hasil dari perhitungan standart deviasai dan varians dengan menggunakan tiga waktu. Kegiatan A memiliki standart deviasi (s) = 0,17 dan varian ( $S^2$ ) = 0,03, Kegiatan B memiliki standart deviasi (s) = 0,33 dan varian ( $S^2$ ) = 0,11, Kegiatan C memiliki standart deviasi (s) = 0,35 dan  $varians(S^2)$ = 0,13, dan seterusnya sampai dengan dengan kegiatan M.

# **Target Jadwal Penyelesaian**

Untuk mencapai target kemungkinan yang terjadi, maka dilakukan perhitungan berikut ini:

- 1. Titik waktu penyelesaian proyek (TE) = 25 hari
- 2.  $V(TE) = \Sigma$  (varian dari aktivitas dijalur kritis) = A + C + E + F + G + I + K + L + M = 0.03 + 0.13 + 0.13 + 0.37 + 0.47 + 0.73 + 0.04 + 0.03 = 1.91
- 3. S = 1,38
- 4. Kemungkinan mencapai target yang pada awalnya 28 hari  $Z = \frac{28-25}{1.38} = \ 2,17$

$$Z = \frac{28-25}{1.38} = 2,17$$

Dengan nilai z sebesar 2,17 maka kemungkinan mencapai waktu yang diharapkan 25 hari yaitu 98,5%

# Time Cost Trade Off (TCTO)

Time Cost Trade Off (TCTO) merupakan cara yang digunakan untuk mempercepat durasi aktivitas proyek dengan menambah besar biaya.

# **Biaya Langsung**

Biaya langsung merupakan biaya yang diperlukan untuk memperoleh sumber daya secara langsung agar dapat menyelesaikan proyek. Untuk biaya sewa peralatan sebesar Rp.200.000 per hari. Durasi proyek normal selama 28 hari sehingga total sewa alat dalam proyekproyek penggantian *cleading*dan ram area crusher pp sebesar Rp. 5.600.000.

Berikut ini merupakan rincian biaya pembelian materialdan consumable per aktivitas.

Tabel 5. Biaya Pembelian Material Dan Consumable

| Simbol   | Nama Kegiatan                              | Biaya          |
|----------|--------------------------------------------|----------------|
| Kegiatan |                                            |                |
| Α        | Persiapan                                  | -              |
| В        | Fabrikasi <i>Frame</i>                     | Rp. 1.559.100  |
| С        | Fabrikasi Gordeng                          | Rp. 4.153.200  |
| D        | Painting Frame                             | Rp. 487.000    |
| E        | Painting Gordeng                           | Rp.1.142.000   |
| F        | Install Scaffolding                        | -              |
| G        | Bongkar Gordeng Dan Dinding Cleading Rusak | Rp. 70.000     |
| Н        | Instal Frame Chiken Mesh                   | Rp. 63.600     |
| ı        | Install Gordeng                            | Rp. 150.000    |
| J        | Install Chiken Mesh                        | Rp. 600.750    |
| K        | Install Dinding Cleading                   | Rp. 13.025.750 |
| L        | Bongkar Scaffolding                        | -              |
| М        | Cleaning Area                              | -              |
| <u> </u> | 57.450                                     |                |

Sumber: PT.ABC

Dari tabel 5 diatas total keseluruhan dari biaya pembelian materialdan *consumable* sesuai dengan rencana anggaran biaya (RAB) yaitu sebesar Rp 21.251.400.

Tabel 6. Biaya Upah Pekerja Tiap Aktivitas

| Simbol   | Nama Kegiatan                              | Biaya         |
|----------|--------------------------------------------|---------------|
| Kegiatan |                                            |               |
| Α        | Persiapan                                  | Rp. 500.000   |
| В        | Fabrikasi <i>Frame</i>                     | Rp. 484.000   |
| С        | Fabrikasi Gordeng                          | Rp. 774.000   |
| D        | Painting Frame                             | Rp. 242.000   |
| E        | Painting Gordeng                           | Rp. 774.000   |
| F        | Install Scaffolding                        | Rp. 1.500.000 |
| G        | Bongkar Gordeng Dan Dinding Cleading Rusak | Rp. 2.250.000 |
| Н        | Instal Frame Chiken Mesh                   | Rp. 484.000   |
| ı        | Install Gordeng                            | Rp. 1.548.000 |
| J        | Install Chiken Mesh                        | Rp. 484.000   |
| K        | Install Dinding Cleading                   | Rp. 2.064.000 |
| L        | Bongkar Scaffolding                        | Rp. 750.000   |
| М        | Cleaning Area                              | Rp. 500.000   |

Sumber:PT.ABC

Dari tabel 6 dapat diketahui total gaji pekerja selama proyek berlangsung yaitu sebesar Rp. 12.354.000. Sehingga tota biaya langsung pada proyekproyek penggantian *cleading* dan ram area crusher pp yang dilaksanakan selama 28 hari yaitu Rp.5.600.000 + Rp. 21.251.400+ Rp. 12.354.000 = Rp. 39.205.400.

## **Biaya Tidak Langsung**

Biaya tak langsung merupakan biaya yang diperlukan pada aktivitas tertentu selama proyek berlangsung. Pada proyek penggantian *cleading* dan ram area crusher pp biaya tidak langsung yaitu mengenai gaji *supervisior* (pengawas), *saftety*, supir dan administrasi yang di jadikan satu *lot* per hari sebesar Rp. 275.000, sehingga biaya Rp. 275.000 x 28 hari = Rp. 7.700.000.

Biayaproyek penggantian cleading dan ram area crusher ppyang dilaksanakan selama 28 hari Rp.39.205.400 + Rp. 7.700.000 = Rp. 46.905.400, dengan *presentasi*keuntungan proyek ((Rp. 60.000.000 - Rp. 46.905.400) / Rp. 60.000.000) x 100% = 21,82%.

#### Penambahan Jam Kerja (Lembur)

Lama waktu jam kerja normal dalam sehari yaitu 8 jam mulai pukul 08.00 sampai 17.00 dengan istirahat 1 jam, penambahan jam kerja (lembur) diatas jam 17.00 dan dihitung 1,5 kali besar gaji per jam untuk 1 jam pertama dan 2 kali gaji per jam untuk 2 jam berikut seterusnya. Produktivitas penambahan jam kerja (lembur) dihitung 90% dari produktivitas normal, penurunan produktifitas bisa disebabkan karena faktor kelelahan dari pekerja dan keterbatasan lainnya di malam hari seperti kedinginan, penerangan dan sebagainya. Pada penambahan jam kerja (lembur) dilaksanakan pada kegiatan kritis kecuali pada kegiatan persiapan, bongkar scaffolding dan cleaning area karena pekerjaan tersebut hanya dilaksanakan dalam 1 hari.

Tabel 7. Biaya Normal Setelah Crashing Dan Biaya Lembur

| Simbol   |                                            |                  | al Setelah<br>ashing | Lembur          |               |
|----------|--------------------------------------------|------------------|----------------------|-----------------|---------------|
| Kegiatan | Nama Kegiatan                              | Durasi<br>(Hari) | Biaya<br>(Rp)        | Durasi<br>(Jam) | Biaya<br>(Rp) |
| С        | Fabrikasi Gordeng                          | 2,625            | 677.250              | 3               | 117.000       |
| E        | Painting Gordeng                           | 2,625            | 677.250              | 3               | 117.000       |
| G        | Bongkar Gordeng Dan Dinding Cleading Rusak | 4                | 2000.000             | 4               | 300.000       |
| ı        | Install Gordeng                            | 5,25             | 1.354.500            | 6               | 234.000       |
| K        | Install Dinding Cleading                   | 7                | 1.806.000            | 8               | 312.000       |

Sumber: Pengolahan Data

Dari tabel 7 dapat diketahui waktu penambahan jam kerja (lembur) pada kegiatan fabrikasi gordeng 3 jam dan biaya sebesar Rp. 117.000, painting gordeng 3 jam dan biaya sebesar Rp. 117.000, sampai dengan pada kegiatan *install* dinding *cleading* 8 jam dan biaya sebesar Rp. 312.000.

Tabel 8. Total Biaya Percepatan Karena Lembur, Material Dan Consumable

| Simbol Kegiatan | Biaya Percepatan | Biaya Material Dan<br>Consumable | Total          |
|-----------------|------------------|----------------------------------|----------------|
| Α               | Rp. 500.000      | -                                | Rp. 500.000    |
| В               | Rp. 484.000      | Rp. 1.559.100,00                 | Rp. 2.043.100  |
| С               | Rp. 794.250      | Rp. 4.153.200,00                 | Rp. 4.947.450  |
| D               | Rp. 242.000      | Rp. 487.000,00                   | Rp. 729.000    |
| E               | Rp. 794.250      | Rp. 1.142.000,00                 | Rp. 1.936.250  |
| F               | Rp. 1.500.000    | -                                | Rp. 1.500.000  |
| G               | Rp. 2.300.000    | Rp. 70.000,00                    | Rp. 2.370.000  |
| Н               | Rp. 484.000      | Rp. 63.600,00                    | Rp. 547.600    |
| I               | Rp. 1.588.500    | Rp. 150.000,00                   | Rp. 1.738.500  |
| J               | Rp. 484.000      | Rp. 600.750,00                   | Rp. 1.084.750  |
| K               | Rp. 2.118.000    | Rp. 13.025.750,00                | Rp. 15.143.750 |
| L               | Rp. 750.000      | =                                | Rp. 750.000    |
| M               | Rp. 500.000      | -                                | Rp. 500.000    |
|                 |                  |                                  |                |

Sumber: Pengolahan Data

Dari tabel 8 dapat mengetahui total biaya langsung yang sudah dilakukan percepatan durasi 25 hari sebesar Rp. 33.790.400 di tambah biaya sewa alat sebesar Rp. 5.000.000, maka total Rp.

38.790.400 Sedangkan biaya tidak langsung setelah dilakukan percepatan durasi 25 hari sebesar Rp. 6.875.000 Sehingga total Biaya langsung dan biaya tidak langsung sebesar Rp. 45.665.400 dengan presentasi keuntungan proyek ((Rp. 60.000.000 - Rp. 45.665.400) / Rp. 60.000.000) x 100% = 23,89%.

# Penambahan Tenaga Kerja

Penambahan tenaga kerja dilakukan untuk mempercepat durasi kegiatan yang berada pada jalur kritis. Pertambahan tenaga kerja hanya dilakukan pada kegiatan painting gordeng, bongkar gordeng dan dinding cleading rusak, install gordengdan install dinding cleading karena memiliki waktu terlama dan sudah mencukupi untuk percepatan selama 25 hari.

Tabel 9. Hasil Perhitungan Slop Biaya Penambahan Tenaga Kerja

| Simbol   |        | Normal        | Crashing | Pe     | ercepatan     | Slop Biaya  |
|----------|--------|---------------|----------|--------|---------------|-------------|
| Kegiatan | Durasi | Biaya         | (Hari)   | Durasi | Biaya         | _           |
| E        | 3      | Rp. 774.000   | 0.75     | 2.25   | Rp. 834.750   | Rp. 60.750  |
| G        | 4,5    | Rp. 2.250.000 | 0.5      | 4      | Rp. 2.452.000 | Rp. 202.000 |
| ı        | 6      | Rp. 1.548.000 | 0.75     | 5.25   | Rp. 1,947.750 | Rp. 399.750 |
| K        | 8      | Rp. 2.064.000 | 1        | 7      | Rp. 2.597.000 | Rp. 533.000 |

Sumber: Pengolahan Data

Dari tabel 9 dapat diketahui selisih waktu dan *slop* biaya pada masing-masing kegiatan mulai dari kegiatan A sampai dengan kegiatan M, dengan durasi awal 28 hari menjadi 25 hari. Berikut ini merupakan tabel biaya percepatan karena penambahan tenaga kerja, material dan *consumable* pada masing-masing kegiatan.

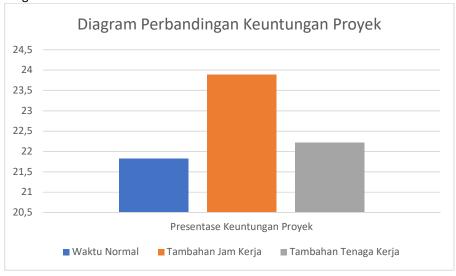
Tabel 10. Total Biaya Percepatan Karena Penambahan Tenaga Kerja, Material Dan Consumable

| Simbol   | Piava Darsanatan | Biaya Material dan | Total          |
|----------|------------------|--------------------|----------------|
| Kegiatan | Biaya Percepatan | Consumable         | TOTAL          |
| Α        | Rp. 500.000      | -                  | Rp. 500.000    |
| В        | Rp. 484.000      | Rp. 1.559.100,00   | Rp. 2.043.100  |
| С        | Rp. 774.000      | Rp. 4.153.200,00   | Rp. 4.927.200  |
| D        | Rp. 242.000      | Rp. 487.000,00     | Rp. 729.000    |
| E        | Rp. 834.750      | Rp. 1.142.000,00   | Rp 1.976.750   |
| F        | Rp. 1.500.000    | -                  | Rp. 1.500.000  |
| G        | Rp. 2.452.000    | Rp. 70.000,00      | Rp. 2.522.000  |
| Н        | Rp. 484.000      | Rp. 63.600,00      | Rp. 547.600    |
| I        | Rp. 1,947.750    | Rp. 150.000,00     | Rp. 2.097.750  |
| J        | Rp. 484.000      | Rp. 600.750,00     | Rp. 1.084.750  |
| K        | Rp. 2.597.000    | Rp. 13.025.750,00  | Rp. 15.622.750 |
| L        | Rp. 750.000      | -                  | Rp. 750.000    |
| М        | Rp. 500.000      | -                  | Rp. 500,000    |

Sumber: Pengolahan Data

Dari tabel 10 dapat mengetahui total biaya langsung yang sudah dilakukan percepatan durasi 25 hari sebesar Rp. 34.800.900 di tambah biaya sewa alat sebesar Rp. 5.000.000, maka total Rp. 39.800.900 Sedangkan biaya tidak langsung setelah dilakukan percepatan durasi 25 hari sebesar Rp. 6.875.000 Sehingga total Biaya langsung dan biaya tidak langsung sebesar Rp. 46.675.900

dengan *presentasi* keuntungan proyek ((Rp. 60.000.000 - Rp. 46.675.900) / Rp. 60.000.000) x 100% = 22,21%


Berikut ini merupakan tabel hasil analisis yang telah dilakukan pada proyek penggantian *cleading* dan ram area *crusher* pp.

Tabel 11. Perbandingan Hasil Analisis Biaya Dan Waktu

| No | Uraian                | Waktu<br>(Hari) | Biaya          | Presentasi<br>keuntungan<br>proyek |
|----|-----------------------|-----------------|----------------|------------------------------------|
| 1  | Durasi Normal         | 28              | Rp. 46.905.400 | 21,82%.                            |
| 2  | Tambahan Jam Kerja    | 25              | Rp. 45.665.400 | 23,89%.                            |
| 3  | Tambahan Tenaga Kerja | 25              | Rp. 46.675.900 | 22,21%                             |

Sumber: Hasil Analisis Data

Dari tabel 11 dapat mengetahui perbandingan biaya dan waktu dari durasi normal, tambahan jam kerja dan tambahan tenaga kerja. Dari tabel dapat digambarkan dalam diagram batang pada gambar 2 berikut ini



Gambar 2. Diagram Perbandingan Presentase Keuntungan Proyek

Dari gambar 2 dapat mengetahui bahwa keuntungan proyek pada waktu normal 28 hari sebesar 21,82%. Sedangakan apabila dipercepat dalam waktu 25 hari dengan penambahan jam kerja keuntungan proyek sebesar 23,89% dan apa apabila dipercepat dalam waktu 25 hari dengan penambahan tenaga kerja keuntungan proyek sebesar 22,21%.

#### **KESIMPULAN**

Berdasarkan hasilperhitungan dan pembahasan maka dapat disimupulkan sebagai berikut:

- a. Untuk mengetahui lintasan kritis pada proyek penggantian *cleading* dan ram area crusher pp yaitu apabila nilai*float* total sama dengan 0. Kegiatan yang terdapat pada lintasan kritis yaitu persiapan, fabrikasi gordeng, *painting* gordeng, bongkar gordeng dan dinding *cleading* rusak, *install* gordeng, *install* dinding *cleading*, bongkar *scaffolding dan cleaning* area dengan total waktu selama 28 hari.
- b. Waktu penyelesaian dapat dipercepat menggunakan penambahan jam kerja (lembur) menjadi25 hari, biaya total Rp. 45.665.400 dengan *presentasi* keuntungan sebesar 23,89%. Sedangkan dipercepat menggunakan penambahan tenaga kerja menjadi 25 hari, biaya total

Rp. 46.675.900 dengan *presentasi* keuntungan sebesar 22,21%. Jadi untuk percepatan proyek menggunakan penambahan jam kerja kareana biaya lebih murah dan keuntungan proyek bisa lebih besar.

#### **DAFTAR PUSTAKA**

- Arianie, G, P Dan Puspitasari, N, B. 2017. *Perencanaan Manajemen Proyek Dalam Meningkatkan Efisiensi Dan Efektifitas Sumber Daya Perusahaan (Studi Kasus :QiscusPte Ltd)*.

  Jurnal Teknik Industri. Vol. 12, No. 3.
- Caesaron, D Dan Thio, A. 2015. *Analisa Penjadwalan Waktu Dengan Metode Jalur Kritis Dan Pert*Pada Proyek Pembangunan Ruko (Jl. Pasar Lama No.20, Glodok). Journal of
  Industrial Engineering & Management Systems. Vol. 8, No. 2.
- Dharmawan, W, I, Oktarina, D Dan Wibowo, T, C. 2017. *Evaluasi Penjadwalan Proyek Pengembangan Rumah Sakit Mitra Husada Pringsewu*. Media Komunikasi Teknik Sipil. Vol.23, No.1.
- Dimyati, A, H Dan Nurjaman, K. 2016 Manajemen Proyek. Bandung: CV Pustaka Setia.
- Ezekiel, R, M, Tjakra, Pingkan, I, J Dan Pratasis, A, K. 2016. Penerapan Metode Cpm Pada Proyek Konstruksi (Studi Kasus Pembangunan Gedung Baru Kompleks Eben Haezar Manado). Jurnal Sipil Statik. Vol. 4 No. 9.
- Priyo, M Dan Aulia, M, R. 2015. *Aplikasi Metode Time Cost Trade Off Pada Proyek Konstruksi:*Studi Kasus Proyek Pembangunan Gedung Indonesias. Jurnal Ilmiah Semesta Teknika. Vol. 18, No. 1.
- Priyo, M Dan Sumanto, A. 2016. AnalisisPercepatan Waktu Dan Biaya Proyek Konstruksi Dengan Penambahan Jam Kerja (Lembur) Menggunakan Metode Time Cost Trade Off:

  Studi Kasus Proyek Pembangunan Prasarana Pengendali Banjir.Jurnal Ilmiah Semesta Teknika. Vol. 19, No. 1.
- Raharja, I. 2014. *Analisa Penjadwalan Proyek Dengan Metode Pert Di Pt. Hasana Damai Putra Yoqyakarta Pada Proyek Perumahan Tirta Sani*.Jurnal Bentang.Vol. 2 No. 1.
- Sugiyarto, Qomariyah, S Dan Hamzah, F. 2013. *Analisis Network Planning DenganCpm (Critical Path Method) DalamRangkaEfisiensiWaktu Dan BiayaProyek*E-JurnalMatriksTeknikSipil.Vol. 1 No. 4.
- Sugiyono. 2017 MetodePenelitianPendidikan(Pendekatankuantitatif, Kualitatif, dan R&D). Bandung: CV Al Fabeta.